A Perturbative Approach for the Solution of Sturm-Liouville Problems
Nadaniela Egidi,
Josephin Giacomini,
Pierluigi Maponi
Issue:
Volume 12, Issue 3, June 2023
Pages:
46-54
Received:
24 March 2023
Accepted:
27 April 2023
Published:
13 June 2023
Abstract: Spectral analysis extends the theory of eigenvectors and eigenvalues of a square matrix to a broader theory involving operators. In particular, a branch of spectral analysis is devoted to Sturm-Liouville (SL) problems, which are eigenvalue problems for differential operators. In this study, we propose a numerical method to solve SL problems. This method uses a simple perturbative approach. Starting from an SL problem having differential operator L0 and known eigensystem, the proposed iterative algorithm considers M SL problems having differential operators Lm, m = 1, 2,..., M, such that Lm is a perturbation of Lm−1, and LM is the differential operator of the SL problem that we want to solve. Each step of this algorithm is based on the well-known Jacobi orthogonal component correction method, which acts on the refinement of approximated eigensystems. Moreover, the proposed method depends on the choice of L0 and the representation basis for the eigenfunctions, thus giving rise to different approximation schemes. We show the performance of the proposed method both in the solution of some selected SL problems and the refinement of approximated eigensystems computed by other numerical methods. In these numerical experiments, the perturbative method is compared with a classical approximation technique and the obtained results are strongly promising in terms of accuracy.
Abstract: Spectral analysis extends the theory of eigenvectors and eigenvalues of a square matrix to a broader theory involving operators. In particular, a branch of spectral analysis is devoted to Sturm-Liouville (SL) problems, which are eigenvalue problems for differential operators. In this study, we propose a numerical method to solve SL problems. This m...
Show More