Unsteady Jeffrey-Hamel Flow in the Presence of Oblique Magnetic Field with Suction and Injection
Edward Richard Onyango,
Mathew Ngugi Kinyanjui,
Mark Kimathi,
Surindar Mohan Uppal
Issue:
Volume 9, Issue 1, February 2020
Pages:
1-13
Received:
3 February 2020
Accepted:
13 February 2020
Published:
25 February 2020
Abstract: In this study, the magnetohydrodynamic flow of an incompressible, viscous electrically conducting fluid through a convergent-divergent channel in the presence of an oblique variable magnetic field to the flow with a case of suction and injection on the walls has been investigated. The velocity profiles, temperature profiles, the effects of injection and suction, time, induced magnetic field and the effects of varying various parameters on the flow have been investigated. The equations governing the MHD flow are solved by the collocation method and the results presented in graphs. The velocity, temperature, and magnetic induction increases with the increase in the suction parameter and decrease in the wedge angle while velocity, temperature, and magnetic induction reduce with the increase in the injection parameter. The velocity, temperature and magnetic induction increase with the increase in the Hartmann number. The results of this study will be useful information to the engineers to improve the performance and efficiency of machines in the industrial, environmental, aerospace, chemical, civil, mechanical and biomechanical engineering applications.
Abstract: In this study, the magnetohydrodynamic flow of an incompressible, viscous electrically conducting fluid through a convergent-divergent channel in the presence of an oblique variable magnetic field to the flow with a case of suction and injection on the walls has been investigated. The velocity profiles, temperature profiles, the effects of injectio...
Show More
Inequalities for the Mixed Radial Blaschke-Minkowski Homomorphisms and the Applications
Issue:
Volume 9, Issue 1, February 2020
Pages:
14-19
Received:
8 December 2019
Accepted:
19 December 2019
Published:
17 April 2020
Abstract: The notion of intersection body is introduced by Lutwak in 1988, it is one of important research contents and led to the studies of Busemann-Petty problem in the Brunn-Minkowski theory. Based on the properties of the intersection bodies, Schuster introduced the notion of radial Blaschke-Minkowski homomorphisms and proved a lot of related inequalities. In this paper, by applying the dual mixed volume theory and analytic inequalities, we first give a lower bound of the dual quermassintegrals for the mixed radial Blaschke-Minkowski homomorphisms. As its an application, we get a reverse form of the well-known Busemann intersection inequality. Further, a Brunn-Minkowski type inequality of the Lp radial Minkowski sum for the dual quermassintegrals of mixed radial Blaschke-Minkowski homomorphisms is established, and then the intersection body version of this Brunn-Minkowski type inequality is yielded. From this, we not only extend Schuster's related result but also obtain the Brunn-Minkowski type inequalities of Lp harmonic radial sum and Lp radial Blaschke sum, respectively.
Abstract: The notion of intersection body is introduced by Lutwak in 1988, it is one of important research contents and led to the studies of Busemann-Petty problem in the Brunn-Minkowski theory. Based on the properties of the intersection bodies, Schuster introduced the notion of radial Blaschke-Minkowski homomorphisms and proved a lot of related inequaliti...
Show More